
Management of Digital Streams of an Autonomous System

by the Raw Socket Ethernet Channel Virtualization Method in

Linux OS

Victor Tikhonov1, Serhii Nesterenko2, Olena Tykhonova1, Oleksandra Tsyra1, Olha Yavorska1 and

Vladyslav Hlushchenko1
1Department of Computer Engineering and Information Systems, State University of Intelligent Technologies and

Telecommunications, Kuznechna Str. 1, Odesa, Ukraine
2Odesa Polytechnic National University, Shevchenko Avenue 1, Odesa, Ukraine

{victor.tykhonov, elena.tykhonova}@suitt.edu.ua, sa_nesterenko@ukr.net, aleksandra.tsyra@gmail.com,

yavorskayao7@gmail.com, vlad.gluschenko.97@gmail.com

Keywords: Autonomous System, Digital Stream Management, Channel Virtualization, Ethernet, Raw Socket, Linux.

Abstract: The issues of multimedia data transfer in packet-based networks have been considered in this work. Known

approaches to digital streams management in autonomous systems studied with respect to the Internet of

things traffic requirements and sensor networks real time telemetry provisioning. An original method of

telecommunication channel virtualization presented based on Ethernet Raw Socket technique. An algorithm

of digital flows integrating described for data multiplexing by conveyor transporting modules which payload

the 802.3 Ethernet frame instead of conventional IP-packets. Computer model exhibited for simulation the

process of joint multimedia data transmission via Ethernet frames in the form of four Python scripts under the

Linux OS. Scripts SEND and RECEIVE implement the physical layer of Raw Socket interface. The scripts

MUX and DEMUX perform multiplexing and de-multiplexing of integrated multimedia data on the data link

layer. The results of the work intended for next generation networks application and Big Data distributed

systems.

1 INTRODUCTION

The problem statement and the research purpose.

The global telecommunication industry has

achieved outstanding success, which the main is the

modern Internet. According to the International

Telecommunication Unit (ITU) concept, a next

generation network (NGN) should integrate

multimedia services based on the Internet Protocol

(IP) Multimedia Subsystem (IMS) platform. This

concept considers a certain compromise between the

existing information infrastructure of the Internet and

new challenges of increasing quality of service (QoS)

requirements, as well as the quality of content

perception (QoE) [1]. One of the IMS concerns is

ensuring the QoS aware transmission of real-time

traffic (audio/video conferences, digital telemetry of

sensor networks, etc.). This issue occurs due to

stochastic data delay fluctuations while transporting

IP-packets, as well as packet loss due to

communication channel congestions. The above

factors result in voice/video deterioration, end user

connection instability, and slows down the data

exchange rate in real-time control systems [2].

The improvement of NGN transport is carried out

by coherent optical communication (COC)

technologies and multiprotocol label switching

(MPLS) transport profile (MPLS-TP), enhanced data

flow control based on modern network operation

researches. Among them, the software defined

networking (SDN) concept has being actively

developed in recent years. The SDN technology

provides virtualization of given network physical

topology within an autonomous telecommunication

transporting system (AS) by network resources

dynamic reconfiguration in accordance with the

current data flow traffic. The overall data link

capacity is virtually split to parallel channels by

central controller of AS. The SDN networks studied

by domestic and foreign scientists, and significant

results have been achieved in this direction [3-10].

Enhancement the IMS-traffic transmission has been

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

1

mailto:aleksandra.tsyra@gmail.com
mailto:yavorskayao7@gmail.com
mailto:vlad.gluschenko.97@gmail.com

also studied under the concept of multipath routing

[11, 12]. Known approaches for telecom network and

systems management mainly focus given potentials

of embedded technologies and standard protocols.

The QoS real-time data delivering means network

resources reservation by virtual connection

establishment among terminal network entities.

Though it goes beyond a distinct AS

administration policy due to the fixed IP

predetermined for IP-networks interoperability.

Nevertheless, IP (in two standard versions IPv4 and

IPv6) remains mandatory protocol for the Internet

AS-to-AS interaction according to the NGN/ITU

model, because of the most modern network services

and applications are still based on IP. Thus, the real-

time end-to-end data transport via the multilayer IP-

packet encapsulation suffers an excessive overhead

and the lack of efficiency. So, novel principles needed

for multimedia IP packet-data transporting to

overcome emerged challenges.

Given this fact, a fairly competitive mechanism to

advance QoS aware end-to-end multimedia traffic

transmission in the next few decades will be

enhancement the local packet transfer function within

any distinct autonomous transporting system, and

first of all, at the L2/OSI data link layer [13].

The most common data-link-layer interfaces in

modern digital network devices support either wired

twisted pair Ethernet or/and Wi-Fi radio-Ethernet. To

our opinion, exactly the Ethernet standards’

utilization is one of the most promising direction for

further development the Internet packet-based

transport function for real-time multimedia

applications.

The Ethernet/Wi-Fi technology operates with

protocol data units (PDU) of three main types: line

coding symbols (elementary protocol data units),

block coding symbol groups (conventional “bytes”

ranging in size from 2 to 8-12 or more bits) and,

finally, frames channel coding. These three coding

types and their corresponding protocol data units

(PDU) define de facto three conditional data-link

layer sublayers. The first two of them (line coding and

block coding) are usually referred to as the so-called

MAC sublayer - the access to the media-environment

data transmission (twisted copper pair, fiber optic or

radio broadcast). Ethernet frames are an object of the

LLC sublayer - the control of data transfer from the

data link to the network layer. There are a fairly large

number of Ethernet technology standards supported

by most network equipment manufacturers.

IEEE 802.3 is considered the basic standard that

regulates the structure of an Ethernet frame. An

Ethernet 802.3 frame, from the point of view of the

LLC sublayer, has a header of 3 fields (the 6 octets

frame destination MAC-address in the Ethernet local

network; the 6 octets source MAC-address;

the 2 octets "Type/Length" field); payload field

of 46 octets minimal and 1500 octets maximal size;

the 4-octets frame checksum field, which is often

included into the frame header. In general, the

overhead fields of an Ethernet frame at the LLC

sublayer are 6+6+2+4=18 octets. If the frame payload

is less than 46 octets, the payload field must be

padded to 46 octets with non-content buffer

information (padding).

In addition, two more service fields are added to

the Ethernet frame at the MAC sublevel: preamble for

physical synchronization of the frame receiver with

the transmitter symbol sequence (7 octets - 56 bits of

the form 101010...10); Frame Start Delimiter (FSD)

in the form of octet 10101011. The appearance of the

last 1 in the FSD octet means that the next character

is the first bit destination MAC-address. Between any

two consecutively transmitted Ethernet frames an

Inter Frame Gap (IFG) must be inserted in the form

of the signal absence for a period of at

least 12 conditional octets; the physical size of the

IFG depends on the nominal standardized bitrate in

the Ethernet channel (starting from 10/100 Mbps and

further up to 1/10/100 Gbps or more).

The typical payload of an Ethernet frame is a

standard IP-packet. However, for the virtualization of

communication channels at the L2 level, a non-trivial

task arises of splitting an integral frame into separate

virtual parts (transport containers) of variable length

within the overall standardized frame payload size of

1500 octets. Some network operating systems (in

particular, Linux) provide for the possibility of non-

standard use of Ethernet frames and encapsulated

protocols at different OSI levels using the so-called

sockets (logical connections). In particular, an

applied programmer is granted to artificially generate

the TCP/UDP transport segments, IP-packet headers,

and Ethernet frames as a whole. The non-trivial

frames generation on the transmitting side of the

channel (and the non-standard interpretation of these

frames on the receiving side) corresponds to the

lowest level of programming specialized application

interfaces (the so-called Raw Ethernet sockets). At

the same time, for the normal operation of Raw

Ethernet sockets, it is necessary to correctly form the

destination MAC-address (DMAC), as well as the

source MAC-address (SMAC) in the first 12 octets of

the frame header. The other two fields of the standard

Ethernet frame (2 octets of the Type/Length field and

4 octets of the checksum field) may be freely formed

and added to the frame payload [14].

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

2

The objective of this work is further developing of

digital flows management based on multimedia data

integration via the scalable LLC-sublayer

multiplexing and routing-less IP-packets

transportation through an autonomous system.

To achieve this, the task was set to jointly transfer

data of different types with different sender and

recipient addresses in one raw socket Ethernet frame.

To experimentally verify this approach, a software

package was developed in the python/Linux

environment, which consists of four main modules:

SEND the raw socket cyclic frame transmission;

RECEIVE the raw socket periodic frame reception;

MUX and DEMUX the integrated stream segments

multiplexing and demultiplexing. For testing the

actual physical transmission of raw socket frames,

two types of interaction are implemented: the master-

slave Ethernet link via the 8-wire copper twisted-pair

cross cable patch-cord, and radio-link via the Wi-Fi

access point. The more detail results of this study are

discussed below.

2 INTEGRATION THE

MULTIMEDIA STREAMS IN

VIRTUAL CHANNELS OF

RAW SOCKET ETHERNET

The Figure 1 shows the principles of multimedia data

integration over a packet network by virtualizing an

IP-over-Raw Socket Ethernet link. The two OSI

levels are presented here: the L3 network layer (IP-

packets queue of three different multimedia streams

F1, F2, F3), the L2 data-link layer (divided into two

Ethernet technology sub-levels MAC and LLC). The

data blocks of three different IP-packet’s payloads are

formed by the segments DS1, DS2, DS3 (each can

include any arbitrary part of the corresponding IP-

packet). Besides, the correspondent command

segments CS1, CS2, CS3 are formed for individual

treatment of these three data streams. The sizes of DS

payload segments and CS command segments are

variable.

Further, at the L2 LLC sub-level, a queue of

segments (CS, DS) of individual streams is reshaped

into payload transporting modules of a given size

(Payload in Figure 1) within the allowable payload of

an Ethernet frame (it was indicated above that this

size can exceed 1500 octets due to the simplified Raw

Header Socket Ethernet). The method of converting

an IP-packets queue into a sequence of Payload_TM

transport modules can be chosen arbitrarily

depending on the individual requirements for the

individual QoS requirements of multimedia streams.

Finally, at the L2 MAC layer, the Payload_TM

transport modules fit into Raw Socket Ethernet

frames.

Figure 1: Transfer of multimedia traffic over the network

IP/Raw Socket Ethernet.

The Raw Socket Ethernet frames circulate in both

directions of a duplex link with 802.3 Ethernet

network interfaces (or Wi-Fi radio-Ethernet); at the

same time, instead of conventional Ethernet switches

of the L2/OSI level, it is proposed to use modified

flexible Soft-Switch switches to support the

conditional L2.5/OSI level. The peculiarity of such a

Soft-Switch is that an autonomous system enabled for

faster interior IP-packets transfer by simple switching

the separate DS units over the Raw Socket Ethernet

virtual channels using the CS-labels; therefore, no

routing function is needed more within the given

autonomous system.

This way of transmitting IP packets is like MPLS

technology (Multi-Protocol Label Switch) for the fast

packet data transmission within an MPLS domain.

However, the Ethernet over MPLS frame requires an

additional header with a flow switch label (placed

before the main frame header). Beyond, any

conventional frame of Ethernet/MPLS solely

contains a single IP-packet.

This fact is critical when transporting small IP-

packets in real time applications and services (IP

telephony, telemetry traffic in IoT sensor networks,

etc.), since it significantly reduces the information

efficiency of communication channels due to

excessive header redundancy. The Pv6 packet

redundancy with 40 octets header is even more

sensitive.

Figure 2 shows structuring the overall data

sequence into distinct command segments CS and

data segments DS. For this, two 8-bit meta-

commands are used: the command separator

"11111111" (the "FF" byte in the hex-code); data

separator "00000000" (byte "00" in hex-code). To

recognize bytes "FF" or "00" in data segments, the

byte-stuffing mechanism is used: two commands

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

3

("FF01" and "FF02") are reserved to replace the data

characters "FF" and "00".

Figure 2: Structuring a data sequence by virtual channels

of a frame Raw Socket Ethernet.

The packet fragmentation and defragmentation

mechanism assume that any IP-packet of the

incoming multimedia streams queue is divided into

fragments of arbitrary size due to the three reserved

16-bit commands: packet start (byte "FF03" in the 16-

bit code); packet end (byte "FF04"); packet fragment

start (FF05). The packet fragment start command is

removed after the packet arrives the input queue of

the adjacent switch; the packet start/end commands

are remaining. With these commands, the flow

analyzer extracts individual packets from the queue.

3 COMPUTER SIMULATION

THE INTEGRATED DATA

STREAM TRANSMISSION

As mentioned above, the physical layer of the

computer model for transmitting integrated

multimedia streams is built since a special mode of

operation of the standard Ethernet 802.3 technology

(the so-called "raw sockets"). In this mode of

operation, the frame structure, in particular its header,

is formed in accordance with the requirements of

application interface developer. To do this, each

network adapter being interacting with any other one

through the Raw Socket software interface must

support the four software modules: SEND

(transmitting Raw Socket frames to an Ethernet

channel); RECEIVE (receiving/interpreting the

frame); MUX (multiplexing the multimedia data

flows); DEMUX (demultiplexing the multimedia

data flows). The SEND and RECEIVE modules

operate on the physical layer. Both modules can

operate independently at one computer in two Linux

terminals. The MUX/DEMUX operate on L2/OSI,

All the 4 modules coded in Python/Linux [13, 14].

Figure 3 briefly shows the algorithm of SEND

program module. The first block of the diagram

imports the necessary modules (time, socket, binaskii)

and creates the socket itself (socket ()).

Figure 3: The algorithm of the SEND program module.

The second block of the algorithm determines

frame transmission parameters (interface identifier,

S/D MAC addresses). The third block forms the

payload of the frame, as well as the structure of the

entire frame. Next, a loop is created to repeatedly

transmit the frame a certain number of times (for

example, 50 times). This option is used exclusively at

the stage of offline debugging and testing of the

SEND/RECEIVE modules. For complete simulation

the software model including the MUX/DEMUX

modules, the SEND module performs a modified

frame payload for each loop iteration.

The RECEIVE software module allocates the

Raw Socket frame into memory buffer and extracts

its Payload (which was generated on the transmitting

side by the MUX module for multiplexing data

streams). The payload content is further handled by

the DEMUX module on the receiving side.

cycle creation

while n<=50:

if now > …

Data packet formation

PAYLOAD, FRAME

Module import and socket creation

Import time, socket, binaskii

socket()

Determination of source and destination

addresses

bind(), DMAC, SMAC

Sending a data packet

sock.send

Code change n and time delay

n=n+1, time.sleep (0.1)

sock.send()

Program completion

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

4

Briefly consider the key operators of the MUX

software module. The first block of statements

defines the parameters of the conveyor transporting

modules (CTM) that is payload for the Raw Socket

frame, as well as the initial value of the iteration

variable n. Next, the operator

fin=open("/home/user/Desktop/InPack.txt",'r')

opens file "/home/user/Desktop/InPack.txt" for

reading; this file contains a sequence of packets. The

operator

fout=open("/home/user/Desktop/OutPack.txt",'w')

opens the file "/home/user/Desktop/OutPack.txt" for

writing; this file contains CTM modules generated for

output.

The operator x=fin.read(1) sets the read pointer in

the file fin to the first position. The operator while

n<=6: opens a loop of iterations over an iteration

variable n from n=1 (specified above) to 6; the

iteration loop body is determined by the same offset

of all first line loop operators.

The last statement in the loop is n=n+1. The L=2

operator defines the initial length of the real-time data

block L=2; this value is due to the fact that each CTM

necessarily contains a two-character tag "C0" (end of

real-time data block).

The operator print '\n CTM='"%2d"%(n), prints

the current CTM value on the monitor. The script \n

means jump to a new print line; the script "%2d"%(n),

formats printing the module number n as an integer in

two positions; comma at the end means that the next

print statement will output the data at the same line.

The operator fout.write('\n CTM='"%2d"%(n),)

prints CTM module number to the source file

OutPack.txt with internal virtual name “fout”.

The Figure 4 shows the module DEMUX script for

demultiplexing aggregated streams. The operator

f = open ("/home/user/Desktop/ OutPack.txt", 'r')

 opens file OutPack.txt for reading; its internal is

taken “f”.

The operator x=f.read(1) sets the file pointer of

“f” to the first character of this file; the initial length

of the character string x equals zero (i.e. the string of

characters x is empty).

The operator print ' ', displays a space on the

monitor screen (comma at the end means that the next

print will be carried out on the same line through one

space).

The operator while len(x) > 0: opens the main

iteration loop until the size of the character string x is

greater 0 (that is, until all non-empty characters in the

open file OutPack.txt, denoted by f in the module, run

out). The operator x=f.read(1) reads one character

from the current position of the pointer (in this case,

from the first position); the value of this character is

assigned to variable x.

The operator if (x == 'C'): checks whether x= "C";

if so, then a following code executed:

f.seek(-1,1)

x = f.read(2)

if ((x == 'CA') or (x == 'C0')).

In this block, the operator rolls back the pointer by

one position (i.e., sets the pointer to the first character

of the file again). Next, operator

x = f.read(2) reads two characters from this current

pointer position. Finally, the operator if ((x == 'CA')

or (x == 'C0')): checks if these two characters are

mark-up tags of type CA (beginning of packet) or C0

(end of real-time data block in CTM). If the “CA” or

“C0” tag is indeed read, then this tag is printed on the

monitor screen.

Figure 4: Python script of the program module SEND.

Next, a built-in loop is introduced to read the

following characters (which are the letters of the

package): for k in range (1, 10): The increment k from

1 to 10 is taken arbitrary (consider the packet

fragment size not exceed 10 characters).

The operator if x == 'C': f.seek(-1,1); checks

whether the next character read is reserved letter "C";

if not, the next character is printed on the monitor

screen (operator print x,); comma at the end means

the following characters will be printed side by side

on the same line. If the character “C” is read, then the

file pointer is shifted for one position back, and the

built-in loop for k in range (1, 10) ends by command

break. Then the main loop continues

(while len(x) > 0:). In this case, the operation of

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

5

reading characters from the file f is carried out with

the current pointer (which gradually moves until the

end of the file is reached); under these conditions, the

main loop ends.

3 CONCLUSIONS

Novel principles proposed for digital streams

management in autonomous telecommunication

transporting systems at the OSI data link layer. This

approach aims further improvement the information

efficiency of network equipment and communication

channels utilization, as well as to meet increased QoS

requirements for real-time applications.

To achieve this, the original method of digital

streams management in autonomous systems

introduced on the base of multimedia data integration

on Logical Link Control sublayer by virtualization the

Raw Socket Ethernet channel.

The method provides scalable multiplexing and

switching-mode IP-packets transportation via an

autonomous system avoiding the interdomain routing

processes. Computer model of integrated multimedia

streaming presented on Linux Python. The results of

the work intend for next generation networks

application in the concept of the Internet of Things.

REFERENCES

[1] G. Bertrand, “The IP Multimedia Subsystem in Next
Generation Networks,” Gilles Bertrand, 2007.
[Online]. Available: http://www.rennes.enst-
bretagne.fr/ ~gbertran/files/ IMS_an_overview.pdf.

[2] V. Hol and M. Irkha, “Telekomunikatsiini ta
informatsiini merezhi: navchalnyi posibnyk,” Kyiv:
ISZZI KPI im. Ihoria Sikorskoho, 2021, 250 p.

[3] M. Mousa, “Software Defined Networking concepts
and challenges,” 2016. [Online]. Available:
https://www.researchgate.net/publication/312569297
_Software_Defined_Networking_concepts_and_chal
lenges.

[4] P. Vorobiienko, L. Nikitiuk, and P. Reznichenko,
“Telekomunikatsiini ta informatsiini merezhi:
Pidruchnyk [dlia vyshchykh navchalnykh zakladiv],”
K.: SAMMIT-Knyha, 2010, 708 p.

[5] L. Kriuchkova, “Metodolohiia Upravlinnia
infokomunikatsiy̆nymy merezhamy zi zminnymy
strukturamy v umovakh destruktyvnykh vplyviv,”
Dyssertatsyia na soyskanye uchenoi stepeny doktora
tekhnycheskykh nauk po spetsyalnosty 05.12.02.
Hosudarstvennyi unyversytet telekommunykatsyi,
Kyiv, 2017.

[6] М. Klymash, O. Shpur, V. Bahrii, and A. Shvets,
“Metod dyferentsiiovanoho multypotokovoho
keruvannia trafikom u transportnykh prohramno-
kerovanykh merezhakh,” Natsionalnyi universytet

Lvivska politekhnika. Radioelektronika ta
telekomunikatsii, no. 796, 2014, pp. 60-68.

[7] O. Aouedi, K. Piamrat, and B. Parrein, “Intelligent
Traffic Management in Next-Generation Networks,”
Future Internet 2022, 14(2), 44; [Online]. Available:
https://doi.org/10.3390/fi14020044.

[8] M. Al-Jameel, T. Kanakis, S. Turner, A. Al-Sherbaz,
and W. Bhaya, “A Reinforcement Learning-Based
Routing for Real-Time Multimedia Traffic
Transmission over Software-Defined Networking,”
Electronics, 2022. [Online]. Available:
https://doi.org/10.3390/electronics11152441.

[9] M. Yanev, S. McQuistin, and C. Perkins, “Does TCP
new congestion window validation improve HTTP
adaptive streaming performance?” NOSSDAV’22,
June 17, 2022, Athlone, Ireland, pp. 29–35. [Online].
Available: https://doi.org/10.1145/
3534088.3534347.

[10] M. Seliuchenko, “Modeli ta alhorytmy
pidvyshchennia yakosti obsluhovuvannia u
telekomunikatsiinykh prohramno-konfihurovanykh
merezhakh,” Dysertatsiia na zdobuttia naukovoho
stupenia kandydata tekhnichnykh nauk: 05.12.02 –
telekomunikatsiini systemy ta merezhi; Lviv, 2016,
156 p.

[11] M. Dibrova, “Sposib bahatoshliakhovoi
marshrutyzatsii v kompiuternykh merezhakh velykoi
rozmirnosti,” Avtoreferat dysertatsii, KhNURE,
2017.

[12] O. Lemeshko and K. Arus, “Model vidmovostiikoi
marshrutyzatsii z realizatsiieiu riznykh skhem
rezervuvannia resursiv merezhi v umovakh
multypotokovoho trafiku,” Materialy vseukrainskoi
naukovo-praktychnoi konferentsii “Suchasni
problemy Telekomunikatsii i pidhotovka fakhivtsiv v
haluzi telekomunikatsii - 2014” SPTEL, 2014, Lviv:
NU “Lvivska politekhnika”, 2014, pp. 15-20.

[13] V. Tikhonov, O. Tykhonova, O. Tsyra, O. Yavorska,
A. Taher, O. Kolyada, S. Kotova, O. Semenchenko,
and E. Shapenko, “Modeling the conveyor-modular
transfer of multimedia data in a sensor network of
transport system,” Eastern-European Journal of
Enterprise Technologies, 2018, vol 2, no. 2 (98),
pp. 6-14.

[14] V. Tikhonov, E. Tykhonova, O. Yavorskaia,
V. Berezovskyi, A. Nehalchuk, and V. Hlushchenko,
“Postroenye symuliatora dlia peredachy dannykh
telemetryy cherez modyfytsyrovannyi ynterfeis
Ethernet,” Materialy 73 NTK profesorsko-
vykladatskoho skladu, naukovtsiv, aspirantiv ta
studentiv (Odesa, 12-14 December 2018),
pp. 100-103.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

6

http://www.rennes.enst-bretagne.fr/%20~gbertran/files/%20IMS_an_overview.pdf
http://www.rennes.enst-bretagne.fr/%20~gbertran/files/%20IMS_an_overview.pdf
https://www.researchgate.net/
https://hal.archives-ouvertes.fr/hal-03546653/document
https://hal.archives-ouvertes.fr/hal-03546653/document
https://doi.org/10.3390/fi14020044
https://doi.org/10.3390/electronics1115%202441
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://doi.org/10.1145/%203534088.3534347
https://doi.org/10.1145/%203534088.3534347

